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1. Introduction. The estimation of quadrature errors for analytic functions has 
been considered by Davis and Rabinowitz [1]. An estimate for the error of the 
Gaussian quadrature formula for analytic functions was obtained by Davis [2]. 
McNamee [3] has also discussed the estimation of error of the Gauss-Legendre 
quadrature for analytic functions. Convergence of the Gaussian quadratures was 
discussed by Barrett [4]. 

The object of the present paper is to derive error estimates for the Gauss- 
Legendre and the Gauss-Chebyshev quadrature formulas applied to analytic func- 
tions. A few lemmas, which are useful for the derivation of these estimates, have 
also been proved. 

2. The Gauss-Legendre Quadrature Formula. Let L be a closed contour enclos- 
ing the interval [-1, 1] in the z-plane and let the zeros of the Legendre polynomial 
Pn(t) be denoted by { t } ln. On applying the residue theorem to the contour integral 

(1) 1f (z f(z)dz 
27rL (Z - t)Pn (Z) 

we get 
n 

___P___t __ i f (Z P t)d (2) f(t) E P '(t) f(ti) + ., z-t)dz 
i-1(t - ti)Pn'(ti) 27r't' (Z - t)Pn (Z) 

if f(z) is regular within L. 
Integrating both sides with respect to t over [-1, 1] and interchanging the order 

of integration on the right side, we obtain 

rl ~~~n 
(3) ] f(t)dt = X )if(ti) + EGn(f). 

-1 i=1 

This is the Gauss-Legendre quadrature formula of order n over the interval 
[-1, 1]. Here 

1 lPn (t) dt 
Pn (ti) -1 t ti 

are the weights of the quadrature formula known to be positive. The abscissas ti 
and the weights Xi have been tabulated extensively. 

The error of the Gauss-Legendre quadrature formula is given by 

(4) EGn(f) = 1 f Q()f(Z) 

where we have put 
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(5) Qn(z) = 1f Pz(t)-dt 
-1 z - t 

Qn(z), the Legendre function of the second kind, is single valued and analytic in 
the z-plane with the interval [-1, 1] deleted. 

We introduce the mapping 

(6) z = 2(+ + ) =pe i (0 < < 2Xr). 

This maps the exterior of the unit circle 1j = 1 conformally onto the z-plane with 
the interval [-1, 1] deleted. The circle 1 = p (p > 1) is mapped onto an ellipse 
cp with foci at z = :1: and semi-axes 2(p + p-1) and 2(P-p-1) 

2.1. A Lemma for Qn(z). The following lemma has been proved in [5, Lemma 
12.4.6]. 

LEMMA 1. For z EE p 

(7) Qn(z) = E 
k 
k 

k=n+1 k 

where 

IOl'nk? <-r n=O,1,2, *2 , k=n+1,n+ 2,** . 

We improve upon the above lemma as follows: 
LEMMA 2. For z E -p 

co 

(8) Qn(z) = 
0n 

k=n1 ~ 

where 

0-nkl _ 2 , n = 0,1,2, * , k = n + 1, n + 3,*. 

Proof. Following Davis [5, p. 311], setting t = cos 0 and transforming (5) to the 
t-plane, 

1 Pn(cos0) sin OdO 
(9) Qn (Z) =2~-' cos + 2 

1o 124 cos 0 + t 

Now 

(10) sinG [1 - 2-' cos0 + c2o' = Esin (mO) 
m= 

the last series being uniformly and absolutely convergent for 0 ? 0 ? 7r and for 
all j0J > p > 1. Substituting (10) in (9) 

(1 1) Qn (Z) E m2 
m=It 

where 

(12) m= f Pn(cos 0) sin (m0)dO. 

Since jPn(cos 0)1 ? 1 for 0 < 0 _ 7r [5, Corollary 12.4.2] it follows that 
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(13) lnmI ? tsin (mO) do = f sin OdO = 2. 

Again, setting t = cos 0, 

1Tm ~t sin (m arc cos t)t 
-P ' (1 t2)1/2 

Now Tm(t) = cos(m arc cos t) = Chebyshev polynomial of the first kind and 

sin (m arc cos t) = 1 
(1 _t2)1/2 

- 
M =U t 

where Umi,(t) is the Chebyshev polynomial of the second kind of degree m- 1. 
Thus, 

anm = Pn (t) Um-i (t)dt- 

From the orthogonality and symmetry of the Legendre polynomials, it follows 
that 'mm = 0 for m - 1 < n, i.e., for m < n + 1 and m = n + 2, n + 4, 
This establishes the lemma. 

However, the following evaluation of anm is due to Heine [6, p. 3111: 

Onm = f Pn(cos 0) sin (mW)dO 
(14)0 

= (m + n + 1)r(m-n)/ r(m-n + 1)r(mn + 2) 

when m > n and m - n is odd, and the value is zero in all other cases. 
2.2. Convergence of the Gauss-Legendre Quadrature. From Lemma 2, we have for 

z on E., 

(15) I~~~~Qn (z) I ,! -O 2 2p p_n 
kn+l Pk p - 

Also, for z E Ep, it is easy to show [5, 12.4.10] that 

lim IPn (z) I = P. 

That is, given - > 0, there is an N(e), such that for n > N(e), 

(16) JPn(z)J > (p _ )n. 

From (4), by selecting the contour as an ellipse Ep (p > 1), it follows that 

(17) JEGn(f) 1 f(z)J lQ(z)Jds (Jdzl = ds) 

Employing (15) and (16), from (17) we obtain for n > N(e), 

I En(f) (1 2p1(F)M(p))n(P - C)O 

< 2K n )(1- E/p),) 
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where l(e,) = length of c, and K = I(c,)/7r(p - p-l) 
We have thus established the following result: 
THEOREM 1. Let f E A[ -1, 1] and be continuable analytically so as to be single- 

valued and regular in the closed ellipse c, whose foci are at z = i41 and whose sum of 
semi-axes is p (p > 1). Then, given e > 0, we have for n _ N(e), 

(18) tEG. (f)t ? 2KM(p) (1 -E/p),/p 

where M (p) = max If(z) I on ep. 
A similar estimate for EGa(f) has been given by Davis [2, Eq. (35)]. 
2.3. Error Estimates for the Gauss-Legendre Quadrature. Assume that f(z) is 

regular in a sufficiently large domain D of the z-plane containing the interval 
[-1, 1]. In (4), choose the contour L: Izf = R with sufficiently large R, in D. The 
asymptotic value of Qn(z)/Pn(z), for Izl 7-* c, can be obtained from 

Q~~(z) 2n 4 r 3 2 
(19n) 

2 (n!) -2n_1[1 + 2n3 + 3n -n-1 2 
O(Z4 

Pn (z) (2n)! (2n + 1)! z (2n + 3) (2n - 1) 
Taking only the first term of the above expansion for Qn(z)/P7(z), there follows 
the following estimate for the error of the Gauss-Legendre quadrature. 

THEOREM 2. Let f E A[- 1, 1] and be continuable analytically so as to be single- 
valued and regular in a sufflciently large domain D of the z-plane containing the interval 
[-1, 1] in its interior. Then, for sufficiently large R, 

(20) fEGa (f) I ? 2KnM(R)/R2Rn, 

where Kn = 22n(n!)4/(2n)!(2n + 1)! and M(R) = max I f(z)I on IzI = R in D. 
2.4. Next, we consider the case when the integrand f(z) has singularities in the 

z-plane. We shall consider the case when f(z) has a simple pole at z = zo. 
In this case the evaluation of the contour integral (1) gives 

1 f ff(z)dz n f (ti) f (t) (zo) 
2rI JL (Z - f)P(z) i=l (ti - t)Pn(ti) +f(t) + zo t)Pn(zo) 

where 

4(Zo) = lim d [(z-zo) f(Z)] 
2 dz 

Therefore 

f(t)- = 
E Pn(t) f(t.) + q(Zo) Pn(t) 1 J f(z)P.(t)dz 

X=1 (t - ti)Pn'(ti) Pn(zO) (t - zo) 2ri L (Z - t)Pn(z) 

Integrating with respect to t from -1 to 1, and employing (5), there results 
the quadrature formula (3) with the error given by 

1 f f(z) Qn(z)dz 2_ 2(zo) Qn(zo) 
771) J Pn (z) Pn (ZO) 

As Izl oo, the first term will tend to zero and the error in this case will be bounded 
by 

(21) EGn (f)J < 21?(zo)j jQ|(zo)/Pn(zo)j 
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In case Izol > 1, the upper bound tends to zero with increasing n, as follows from 
(19). But if zO -* 1, the upper bound increases unboundedly. 

3. The Gauss-Chebyshev Quadrature Formula. From the contour integral 

(22) 21iifL (| f (z)dz 
27ri L(Z - t) Tn (Z)' 

where f(z) is regular within L, it is easily deduced that 

2(t E TnT(t) 1 | f(z)Tn(t)dz 
(23) Ef =1 fttaTnti 2ri ( Z-)t)T+(z)- 

which is the Lagrange interpolation formula, with the error term, for f(z) at the 
zeros of the Chebyshev polynomial Tn(t) defined on [-1, 1]. 

Integrating both sides of (23) on [-1, 1] with the weight-function (1 - t2)-1 /2, 
we obtain 

(24) f - f(t)dt + 1n f (z) (1 Tn(t)dt \dz 
_ (1 - t2 i 1f(t ) 2iri L T(z) \ -1 (z-t)(1 -t2) 1/2 

This is the Gauss-Chebyshev quadrature formula of order n on [-1, 1]. The 
abscissas and the weights are given respectively by 

t = cos((2i - 1)ir/2n), ,ui= 'r/n, i 1< *,n. 

Define 

(25) Q*(z) = if' ~~~~~~~Tn (t) dt (25) Qn*(Z) = 2 (1 - t2)1/2(Z _ t) 

then Q.*(z) is a single-valued analytic function for all z in the plane with the in- 
terval [-1, 11 deleted. Qn*(z) corresponds to Qn(z), the Legendre function of the 
second kind. 

From (24), in view of (25), the error of the Gauss-Chebyshev quadrature 
formula can be put in the form 

(26) ET (f) = 1 f (z) Q.*(z)dz 

3.1. Lemmas for Qn*(z). In the following we prove two lemmas for the function 
Qn*(z) and subsequently employ them to derive error estimates for the Gauss- 
Chebyshev quadrature formula. 

The following lemma gives a simple representation for Qn*(z) on eF. 
LEMMA 3. For z EE e 

(27) Qn* (z) E = X m-=n+l 1 

where 

dm7Vr for n = 0, 1, 2, , m = n + 1, n + 3,-. 

Also, Qn* (z) can be expressed in the closed form 
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(27') Qn (z) 2(z2 _ 1)1/2(Z (Z2 _ 1)/2) Z 

where the sign is chosen so that iz d4 (z2 - 1)1121 > 1. 

Proof. Transforming (25) to the k-plane, setting t = cos 0, and proceeding ex- 
actly as in Lemma 1, we obtain 

(28) Qn* (Z) = f m 
m=1 

where 

(29) 01m = fi T,n(cos 0) sin (mO) do 

Setting again t = cos 0, 

* 1Tn (t) Um- (t)dt 
-nm t )1/2 

Owing to orthogonality with respect to the weight (1 -t2)-1/2 and the symmetry of 
the Chebyshev polynomials Um(t), it follows that an*m = 0 for m - 1 < n and 
m = n + 2, n + 4, ***. Since Tn(cos 0) = cos(nO), (29) gives 

a_*_ 1 sin (m + n)O + sin (m - n)O dO 
2 JosinG0 

where m n + 1, n + 3, 
Putting m = n + 2k + 1, where k = 0, 1, 2, ** , 

*= 1f sin (2n + 2k + 1)0 + sin (2k + 1)0 dO 

2 1(r + r) = r 

for n = 0, 1, 2, *..., m = n + 1, n + 3, 
This result corresponds to Heine's evaluation of anm in the case of the Legendre 

function Qn(z) indicated at the end of Lemma 2. However, in this case, Qn*(z) can 
be obtained in a closed form. 

From (27), we have for z E ep, 

Qn * = n 2 = 
C 

(2 - c1 

(27') now follows by observing that t = z + (Z2 _ 1)112. This proves the lemma. 
The following lemma provides an expansion for Qn*(z), similar to that for Qn(z) 

[6, p. 288]. 
LEMMA 4. For IzI > 1, 

X ** 
(30) Qn* (Z) =E nm 

m=n Z 

where 
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n** = 2m+1 ((m -n)/2) 

n=O, 1,2, *2, m=n,n+2,***. 
Proof. We start with (25). For Izl > 1, 

I.1 mI(t\ 
OD Mco Om *m* 

(31) Qn*(z) = (dt =b E m+ t 2 _(1 _t2 1/2 -~M= Z+1i Z= On 

where 

2 1 (1 t2 )2 

Since 

[m/2] M 

(33) t= 2 >J' ( k)Tm2k, 
k==O k 

where the prime on the summation sign indicates that the last term is to be halved 
when m is even. Substituting (33) in (32) and using the orthogonality of the 
Chebyshev polynomials, 

M 
(n )2(m Tn (t) Tm2k (t)dt) 

[m/2] M m 2_m 

k= 2O 
- 

k 2bn ,m-2k 

=2'+l (m -n)/2) 

From the orthogonality and symmetry of the Chebyshev polynomials, it follows 
from (32) that ** = 0, if m < n and m = n + 1, n + 3, *..This proves the 
lemma. 

The following are immediate consequences of Lemma 4. 
COROLLARY 1. For all sufficiently large IzI, 

(34) 1~~~~~ Qn* (Z) I < (-7/2'+1) IZI--n-1 

COROLLARY 2. For zlz > 1, 

(35) (Qn*(z)/Tn(z)) = (x/22n)z-2n-1[l + 1z2 + ] 

for n ? 1; if n = 0, the right side is to be divided by 2. 
3.2. Convergence of the Gauss-Chebyshev Quadrature. From Lemma 3, it follows 

that on ?p, 

(36) Qn* (Z) I < (.7r/pn+) (1 _ p-2)_ 

Also, for z C ep, it is easy to verify [5, 4.4.5] that 

lim I Tn(z)) l/n p 

That is, given e > 0, there is an N(e) such that for n > N(e), 
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(37) I Tn (z)I _ (p - )n 

From (26), by selecting the contour as an ellipse ?,p (p > 1), we obtain 

(38) {ETn(l ie If (z I I z (z) I ds( 

Employing (36) and (37), from (38) follows the following estimate for the error of 
the Gauss-Chebyshev quadrature formula. 

THEOREM 3. Let f satisfy the regularity conditions of Theorem 1 and let M(p) and 
K be as defined there. Then, for every e > 0, we have for n > N(e), 

(39) IETn(f) ? < irK(M(p)/p2') (1 - e/p)n. 

3.3. Error Estimates for the Gauss-Chebyshev Quadrature. Let f(z) be regular in a 
sufficiently large domain D of the z-plane containing the interval [-1, 1] in its in- 
terior. In (26), taking L: IzI = R with sufficiently large R and taking only the first 
term of the asymptotic expansion for Qn*(z)/Tn(z) given by (35), the following 
estimate of error of the Gauss-Chebyshev quadrature follows. 

THEOREM 4. Let f satisfy the regularity conditions of Theorem 2. Then, for suf- 
ficiently large R, 

(40) JETn(f) I < (r/22n-1)M(R)/R2n 

An extension to the case of the integrand f(z) having simple poles can be carried 
out as in Section 2.4. 

3.4. The error estimates (20) and (40) are simple to obtain and will not be un- 
duly pessimistic, but hold for functions having a sufficiently large circle of analy- 
ticity. We can, however, obtain simple estimates of error for the Gauss-Chebyshev 
quadrature formula for all functions analytic on [- 1, 1]. 

Let f be analytic on [-1, 1]. Then, for some p > 1, f can be continued analyti- 
cally so as to be regular in the closed ellipse ?,. Taking the ellipse ?, for the contour 
in (26), by virtue of (27'), the error of the Gauss-Chebyshev quadrature can be put 
in the form 

(41) ET (f) 1 f f(z)dz (41) E f=2i p (Z2 
- 

1)1/2(Z 
? 

(Z2 1) 1/2)nTn(Z) 

Since on ?p, 

(42) Tn(z) = 2 + C') 

(41), on transformation to the k-plane, gives 

(43) ET,rf) =-i f fL(e + +)tfid (CP :|I=P). 

From (43) follows the following estimate of error: 
THEOREM 5. Let f E A[- 1, 1] and let p > 1 be such that f(z) is regular in the 

closure of e,. Then 

(44) ETn(f)I < 2irM(p)/(p2 -1), 

where M(p) = max I f(z) I on ep (or equivalently on C,). 
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Remark. For fixed n and varying p, a "least conservative" upper bound (44) 
can be established for some p* (1 < p* < p). Observe, however, that in case the 
integrand f(z) is entire, p* will be a value of p for which M(p)/(p2n - 1) is a mini- 
mum. Similar remarks apply to the estimates (20) and (40). 
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